فهرست و منابع پایان نامه سیستم های تشخیص وسایل نقلیه
فهرست:
مقدمه
فصل یکم- تشخیص وسایل نقلیه ی جاده ای در تصاویر دوربینی
نواحی کاندید شده مورد نظر
1-1-1- تشخیص و ردیابی خط
1-1-2- وسایل نقلیه مورد نظر
تشخیص وسایل نقلیه
فصل دوم - سیستم تشخیص وسایل نقلیه مبتنی بر ویژگی های محلی با استفاده از برد بینایی موازی
2-1- الگوریتم تشخیص
2-1-1- تکنیک پنجره مشخصه
2-1-2- تکنیک فضای مشخصه
2-1-3- انتخاب مشخصه ی ویژگی
2-1-4- عملیات انتخاب
2-2- الگوریتم بردار تدریجی
2-3- آزمایشات تشخیص وسایل نقلیه
2-3-1- وسایل نقلیه همراه با موانع جاده ای
2-3-2- تشخیص وسایل نقلیه
فصل سوم - تشخیص اتوماتیک وسایل نقلیه در توالی از تصاویر هوایی با نرخ فریمی پایین
3-1- نظارت ترافیک
3-2- خط مشی کلی
3-3- تشخیص وسیله نقلیه
3-3-1- روند تشخیص
3-2-2- پارامترها ی وسیله نقلیه
3-3-3- تطبیق
3-4- ارزیابی تشخیص
3-4-1- طرح ارزیابی
3-4-2- اجرای تشخیص و ردیابی
3-4-3-هماهنگی حرکتی
3-4-4- مقدار نهایی
3-5- بررسی الگوریتم
فصل چهارم - تشخیص و مکان یابی وسایل نقلیه جاده ای به طور همزمان بوسیله مدلی مبتنی بر بینایی متمرکز
4-1-2- پردازش مراحل تشخیص و ردیابی
4-1-3- شناسایی جهت تشخیص و توابع هزینه ی آن
4-1-4 - ارزیابی الگوریتم
4-2- کاربرد تشخیص و مکان یابی وسایل نقلیه ی جاده ای
4-2-1- مدل سازی شی در دنیای سه بعدی
4-2-2- فازهای یادگیری
4-2-3- تشخیص و توابع هزینه
4-2-4- مکان یابی وسایل نقلیه
4-2-5- ردیابی وسایل نقلیه
فصل پنجم - تشخیص وسایل نقلیه با استفاده از یادگیری با ناظر
5-1- طرح کلی مدل پیشنهادی
5-2- بهبود تابع تشخیص نمایی اصلاح شده (ام کیو دی اف)
5-3- آزمایشات انجام شده
فصل ششم- تشخیص وسایل نقلیه مبتنی بر تغییر شکل های فوریه ، موج ضربه ای کوچک و منحنی ضربه ای
6-1- استخراج ویژگی
6-1-1- تغییر شکل یافتن فوریه
6-1-2-تغییر شکل یافتن از طریق موج ضربه ای کوچک
6-1-3- تغییر شکل یافتن از طریق منحنی ضربه ای
6-1-4- طبقه بندی
6-2- نتایج آزمایشات
6-2-1-آنالیز تطبیقی توصیف گر فوریه ای، موج ضربه ای و منحنی ضربه ای
6-2-1-1- تغییر شکل فوریه ای
6-2-1-2- تغییر شکل موج ضربه ای
6-2-1-3- تغییر شکل منحنی ضربه ای
6-2-2- کاهش ابعاد بردارهای مشخصه(عوامل مشترک فوریه ،موج ضربه ای ومنحنی ضربه ای)
فصل هفتم - مدل تغییر پذیر عمومی برای تشخیص وسایل نقلیه
7-1- مدل پارامتریزه شده
7-2- جمع آوری اطلاعات
7-3- پایداری ساختار بهبود یافته
7-4- تجزیه و تحلیل اجزای اصلی
فصل هشتم - تشخیص واگن های ریلی در طرح های بازتابشی
8-1- تشخیص سیگنالی
8-1-1- روش کار
8-1-3- توضیح سناریو
8-1-4- روش انجام آزمایش
8-2- تئوری تشخیص سیگنالی
8-3- آزمایش فاصله ی تشخیص
8-3- 1 روش کار
8-3-2- طراحی آزمایش
8-3-3- توضیح سناریو
8-3-4- روش انجام آزمایش
نیتجه گیری
منابع و مآخذ
منبع:
[1] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Transactions on Pattern Analisis and Machine Intelligence, Vol. 23, No. 4, April 2001.
[2] A. Shashua, Y. Gdalyahu, and G. Hayun, “Pedestrian detection for driving assistance systems: single-frame classification and system level performance,” In Proc. IEEE Intelligent Vehicles Symposium, pp. 1-6, Parma, Italy, June 14-17, 2004.
[3] Carroll, A., Multer, J., Williams, D. and M. Yaffee, (1999). Safety of Highway-Railroad GradeCrossings: Freight Car Reflectorization. Report No. DOT/FRA/ORD-98/11, Washington,DC: U.S. Department of Transportation, Federal Railroad Administration.
[4] C. Papageorgiou and T. Poggio, “A trainable system for object detection” . Intl J.Computer Vision, Vol. 38, No. 1, pp. 15-33, 2000.
[5] Chapuis R. Chausse F., Trujillo N and Naranjo M. Object recognition by model based focused vision. 2004.
[6] E. D. Dickmanns and B. D. Mysliwetz, “Recursive 3-D Road and Relative Ego-State Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, February 1992.
[7] Egan, J.P. (1975). Signal Detection Theory and ROC Analysis. New York: Academic Press.
[8] E. Cand Cand`es and D. Donoho, “New tight frames of curvelets and optimal representations of objects with c2singularities,” Tech. Rep., Department of Statistics, Stanford
University, USA, November 2002.
[9] E. Cand Cand`es and L. Demanet, “The curvelet representation of wave propagators is optimally sparse,” Tech.Rep., Applied and Computational Mathematics, California Institute of Technology, USA, 2004. [18] I. Guyon, S. Gunn, M. Nikravesh , Lofti A. Zadeh ,
Feature Extraction: Foundations and Applications, (Studies in Fuzziness and Soft Computing) , Springer, 2006.
[10] Federal Highway Administration. (1988). Manual on Uniform Traffic Control Devices for Streetsand Highways. Washington, DC: U.S. Department of Transportation.
[11] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin. (1996). Washington, DC: U.S. Department of Transportation.
[12] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin #60. (1994). Washington, DC: U.S. Department of Transportation.
[13] Ford, R.E., Richards, S.H., and J.C. Hungerford, (1998). Evaluation of Retroreflective Markings To Increase Rail Car Conspicuity. Project Memorandum . No. DOT-VNTSC-RR897-PM98-22. U.S. Department of Transportation , Volpe National Transportation Center.
Grier, J.B. (1971). Nonparametric Indexes for Sensitivity and Bias: Computing Formulas. Psychological Bulletin, 75 (6), 424-429.
[14] F. Thomanek, E.D. Dickmanns and D. Dickmanns, "Multiple object recognition and
scene interpretation for autonomous road vehicle guidance", Proceedings of the IEEE
Intelligent Vehicles 1994 Symposium, pp.23 1-236, 1994 .
[15] Federal Highway Administration. (1988). Manual on Uniform Traffic Control Devices for Streetsand Highways . Washington, DC: U.S. Department of Transportation.
[16] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin . (1996). Washington, DC: U.S. Department of Transportation.
[17] Federal Railroad Administration, Office of Safety. Highway-Rail Crossing Accident/Incident and Inventory Bulletin #60 . (1994). Washington, DC: U.S. Department of Transportation.
[18] Ford, R.E., Richards, S.H., and J.C. Hungerford, (1998). Evaluation of Retroreflective Markings To Increase Rail Car Conspicuity. Project Memorandum . No.
DOT-VNTSC-RR897-PM98-22 . U.S. Department of Transportation, Volpe National Transportation Center . Grier, J.B. (1971). Nonparametric Indexes for Sensitivity and Bias: Computing Formulas. Psychological Bulletin, 75 (6), 424-429.
[19] Green, D.M. and J. A. Swets, (1988). Signal Detection Theory and Psychophysics.
[20] G. Grubb, A. Zelinsky, L. Nilsson, and M. Rilbe, “3D Vision sensing for improved pedestrian safety,” In Proc. IEEE Intelligent Vehicles Symposium, pp. 19-24, Parma, Italy, June 14-17, 2004.
[21] G. P. Stein, O. Mano, and A. Shashua, “Vision-based ACC with a single camera: bounds on range and range rate accuracy”. In Proc.Int. Conf. Intelligent Vehicles, Versailles, France, June 2002.
[22] H.Murase and S.K. Nayar (1995) “Visual Learning and Recognition of 3-D Objects from Appearance," International Conference on Computer Vision.
[23] Hinz, S. (2004): Detection of vehicles and vehicle queues in high resolution aerial images. Photogrammetrie-Fernerkundung-Geoinformation, 3/04: 201-213.
[24] Hinz, S., Baumgartner, A. (2003): Automatic Extraction of Urban Road Nets from Multi-View Aerial Imagery. ISPRS Journal of Photogrammetry and Remote Sensing 58/1-2 : 83–98.
[25] J. C. Christopher, “A Tutorial on Support Vector Machines for Pattern Recognition”. Data Mining and Knowledge Discovery, No. 2, pp. 121-167. Kluwer Academic Publishers.1 . 1998.
[26] Keiji Yanai and Keiji Deguchi . A multi-resolution image understanding system based on multi-agent architecture for high-resolution images. 2001.
[27] K. Ohba and K. Ikeuch (1997) "Detectability, Uniqueness, and Reliability of Eigen-Windows for Stable Verifications of Partially Occluded," IEEE Pattern
Analysis and Machine Intelligence, vol.19, No.9, pp.1043-1048 .
[28] K.Kagesawa, S.Ueno et al (1999) "Vehicle Recognition in Infra-red Images Using Parallel Vision Board", ITSWC '99, Toronto.
[29] K.Kagesawa, A.Nakamura et al(2000) “Vehicle Type Clasification in Infra-red Image Using Parallel Vision Board”, ITSWC 2000, Torino.
[30] Lauer, A.R., and V.R. Suhr, (1956). “An Experimental Study of Four Methods of Reflectorizing Railway Boxcars . ” Highway Research Board Bulletin, 146, 45-50.
[31] Lebowitz , H.W., Owens, D.A., and R.A. Tyrrell, (1998). The Assured Clear Distance Ahead Rule: Implications for Nighttime Traffic Safety and the Law. Accident Analysis and
Prevention, 30 (1), 93-99.
[32] Lachaise, M. (2005): Automatic detection of vehicles and velocities in aerial digital image series. Diploma Thesis, Universitee Lyon.
[33] Meffert B, Blaschek R, Knauer U, Reulke R, Schischmanow A, Winkler F (2005): Monitoring traffic by optical sensors. Proc. of Second International Conference on Intelligent Computing and Information Systems (ICICIS 2005): 9-14.
[34] M. Papageorgiou , C. Oren and T. Poggio. A general framework for object detection. Proc. Int . Conf . Computer Vision , 1998.
[35] Michael Jones Paul Viola . Rapid object detection using a boosted cascade of simple features . Conference on Computer Vision and Pattern Recognition , 2001.
[36] M. Betke, E. Haritaoglu and L. S. Davis, "Multiple vehicle detection and tracking in
hard real-time", Proceedings of the IEEE Intelligent Vehicles 1996 Symposium, pp.35 1-356, 1996.
[37] McGinnis, R.G. (1979). Reflectorization of Railroad Rolling Stock . Transportation Research Record, 737, 31-43.
[38] Olson, P.L. (1988). Minimum Requirements for Adequate Nighttime Conspicuity of Highway Signs . Report No. UMTRI-88-8 . NTIS No . PB88-179841-HDM . St. Paul: Minnesota Mining and Mfg. Co.
[39] R . Aufr`ere, R. Chapuis and F. Chausse . Amodel-driven approach for real-time road recognition . Machine Vision and Applications , 2001.
[40] Trujillo N. Bayro-Corrochano, E. and Naranjo M. The role of the quaternion fourier descriptors for preprocessing in neuralcomputing. 2003.
[41] Takeo Schneiderman, Henry. Kanade. Object detection using the statistics of parts. International Journal of Computer Vision , 2002.
[42] T. Ito and K. Yamada, "Preceding vehicle road lanes recognition methods for RCAS . using vision system", Proceedings of the IEEE Intelligent Vehicles 1994 Symposium,
pp.85-90 , 1994.
[43] T.Kato and Y.Ninomiya, "An approach to vehicle recognition using supervised
learning", Proceedings of the 4th Symposium on Sensing via Image Information (SII'98),
pp.279-284, 1998 (in Japanese).
[44] Tan, T. N. Sullivan, G. D. and Baker, K. D. Fast Vehicle Localisation and Recognition Without Line Extraction and Matching, Proc. 5th British Machine Vision Conference, pp 85-94, 1994.
[45] Ulrich, M., 2003. Hierarchical Real-Time Recognition of Compound Objects in Images . Dissertation, German Geodetic Commission (DGK), Vol. C. Dubuisson-Jolly, M.-P., Lakshmanan, S. and Jain, A. (1996): Vehicle Segmentation and Classification Using Deformable Templates. IEEE Trans on Pattern Analysis and Machine Intelligence 18 (3): 293–308.
[46] Worrall, A. D., Baker, K. D. and Sullivan, G. D. Model-based perspective inversion, Image and Vision Computing Journal, 7(1), pp 17-23, 1989.
[47] Worrall, A.D., Sullivan, G. D. and Baker, K. D. Advances in Model-based Traffic
Vision , Proc. 4th British Machine Vision Conference , pp 559-568, 1993.