فهرست و منابع پروپوزال مقایسه رفتار قاب فولادی با مهاربندی ضد کمانش و مهاربندی معمولی
فهرست:
ندارد
منبع:
پایان نامه کارشناسی ارشد ( مدلسازی مهاربندهای کمانش ناپذیر به کمک برنامه اجزا محدود دانشگاه فردوسی مشهد اردیبهشت 89
پایان نامه کارشناسی ارشد (اثرات Forward directivity و Fling step در ارزیابی پارامترهای کنترل قابهای مهاربندی شده کمانش ناپذیر) دانشگاه فردوسی مشهد اردیبهشت 89
پایان نامه کارشناسی ارشد (کاهش تغییر مکان پس ماند در قابهای مهاربندی شده با مهاربند کمانش ناپذیر به صورت سیستم دوگانه ) دانشگاه سمنان
American Institute of Steel Construction, Inc. (AISC). (1999). Load and Resistance Factor Design Specification for Structural Steel Buildings. AISC, Chicago, IL, December 27.
American Society for Testing and Materials (ASTM). (2003). Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures. Section 3, Vol. 3.01, West Conshohocken, Pennsylvania.
Barsom, J. M., and Rolfe, S. T. (1999). Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics. Third Edition, ASTM, West Conshohocken, PA.
Bruneau, M., Tremblay, R., Timler, P., and Filiatrault, A. (1995). Performance of steel structures during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, volume 22, number 2, pages 338-360.
Elghazouli, A. Y. (2003). Seismic design procedures for concentrically braced frames. Proceedings of the Institution of Civil Engineers: Structures and Buildings. volume 156, issue 4. Pages 381-394.
Elsesser, E. (1986). A survey of seismic structural systems and design implications. ATC-17, Proceedings of a Seminar and Workshop on Base Isolation and Passive Energy Dissipation, San Francisco, CA, pages 51-62.
El-Tayem, A. A., and Goel, S. C. (1986). Effective Length Factor for the Design of X-bracing Systems. Engineering Journal, AISC, vol. 24, page 41-45.
El-Tayem, A. A., and Goel, S. C. (1986). Cyclic Load Behavior of Angle X-Bracing. Journal of Structural Engineering, vol. 112, Issue 11, pages 2528-2539.
Eurocode 8. (1998). Structures in Seismic Regions, Part 1.1: General Rules and Rules for Buildings. Commision of the European Communities, European Committee for Standardisation, ENV 1998-1-1.
Hanson, R., and Higginbotham, A. B. (1976). Axial hysteretic behavior of steel members. ASCE, Journal of the Structural Division, volume 102, number 7, pages 1365-1381.
Hassan, O. F., and Goel, S. C. (1991). Modeling of Bracing Members and Seismic Behavior of Concentrically Braced Steel Structures. Research Report No. UMCE 91- 1, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan.
Higginbotham, A. B. (1973). The Inelastic Cyclic Behavior of Axially-Loaded Steel Members. Report No.UMEE-73R1, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan.
Ikeda K. and Mahin S. A. (1984). Phenomenological modeling of steel braces under cyclic loading. Report no. UCB/EERC 84/09, Earthquake Research Center, University of California, Berkeley, CA.
Ikeda K. and Mahin S. A. (1984). A refined physical theory model for predicting the seismic behavior of braced steel frames. Report no. UCB/EERC 84/12, Earthquake Research Center, University of California, Berkeley, CA.
Kathib I. F., Mahin, S. A. (1987). Dynamic inelastic behavior of chevron braced steel frames. Fifth Canadian Conference on Earthquake Engineering, Balkema, Rotterdam, pages 211-220.
Kim, H. I., and Goel, S. C. (1996). Upgrading of Braced Frames for Potential Local Failure. Journal of Structural Engineering, May 1996, pages 470-475.
Leowardi, L. S., Walpole, W. R. (1996). Performance of steel brace members. Research Report no. 96-03, Christchurch, New Zealand: Department of Civil Engineering, University of Canterbury.
Naeim, F. (1989). The Seismic Design Handbook. Structural Engineeging Series, Van Nostrand Reinhold, New York.
Nakashima, M., and Wakabayashi, M. (1992). Analysis and design of steel braces and braced frames in buildings structures. Stability and ductility of steel structures under cyclic loading, pages 309-321.
Perotti, F., and Scarlassara, P. (1991). Concentrically Braced Steel Frames under Seismic Actions: Non-linear Behavior and Design Coefficients. Earthquake Engineering and Structural Dynamics, vol. 20, pages 409-427.
Remennikov, A., and Walpole W. (1995). Incremental model for predicting the inelastic hysteretic behavior of steel bracing members. Research Report no. 95-6. Department of Civil Engineering, University of Canterbury, Christchurch, New Zeland.
Shing, P., Bursi, O., and Vannan, T. (1994). Pseudodynamic test of a concentrically braced frame using substructuring techniques. Journal of Constructional Steel Research, volume 29, number 1-3, pages 121-148.
Wakabayashi, M., Nakamura, T., and Yoshida, N. (1977). Experimental Studies on the Elastic-Plastic Behavior of Braced Frames under Repeated Horizontal Loading. Bulletin, Disaster Prevention Research Institute, Kyoto University, vol. 27, no. 251, pages 121-154.
Yanev, P, Gillengerten, J. D., and Hamburger, R. O. (1991). Performance of Steel Buildings in Past Earthquakes. American Iron and Steel Institute (AISI) and EQE Engineering, Inc.