= نیروی چسبندگی
= نیروی فشاری
= نیروی گرانش
= نیروی کشش سطحی
= نیروی تراکم پذیری
نیروهای اینرسی در اکثر مسائل مکانیک سیالات مهم هستند. نسبت نیروی اینرسی به هر یک از نیروهای دیگر فهرست شده در بالا، پنج گروه بیبعد اصلی در مکانیک سیالات را تشکیل می دهد.
در دهه 1880، اسبرن رینولدز، مهندس انگلیسی، گذار بین جریان لایه ای، و جریان متلاطم را در یک لوله مطالعه کرد. او کشف کرد که پارامتر زیر (که بعداً به نام او خوانده شد)
معیاری است که با آن می توان نوع جریان را به دست آورد. بعدها، آزمایش ها نشان دادند که عدد رینولدز پارامتری کلیدی برای دیگر حالت های جریان نیز میباشد. از اینرو، به طور کلی، داریم:
که در آن L طول مشخصه توصیفی هندسه میدان جریان است. عدد رینولدز عبارت است از نسبت نیروهای اینرسی به نیروهای چسبندگی. جریان با عدد رینولدز “بزرگ” معمولاً متلاطم است. جریانی که در آن نیروهای اینرسی در مقایسه با نیروهای چسبندگی “کوچک” هستند به طور مشخصه جریان لایه ای است.
در آیرودینامیک و آزمون های مدل، بهتر است داده های فشار را به شکل بیبعد نشان داد. نسبت زیر:
تشکیل داده می شود، که در آن فشار محلی منهای فشار جریان آزاد است، و V خواص جریان آزاد هستند. این نسبت به نام لئونارد اویلر، ریاضیدان سوئیسی که اکثر کارهای تحلیلی اولیه را در مکانیک سیالات انجام داد، خوانده می شود. اویلر اولین کسی است که نقش فشار را در حالت سیال تشخیص داد؛ عدد اویلر عبارت است از نسبت نیروهای فشاری به نیروهای اینرسی. (ضریب در مخرج وارد میشود تا فشار دینامیکی را بدهد). عدد اویلر را اغلب ضریب فشار، Cp، می نامند.
در مطالعه پدیده حفرهزایی، اختلاف فشار به صورت گرفته میشود، که در آن شرایط جریان مایع هستند. و فشار بخار در دمای آزمایش است. پارامترهای بعد زیر را عدد حفره زایی می نامند،
ویلیام فرود یک آرشیتکت دریایی انگلیسی بود. همراه با پسرش، رابرت ادموند فرود، کشف کرد که پارامتر زیر
برای جریان ها با تاثیرات سطح آزاد مهم است. با مجذور کردن عدد فرود داریم:
که می توان آن را به عنوان نسبت نیروهای اینرسی به نیروهای گرانشی تفسیر کرد. طول، L، طول مشخصه توصیفی میدان جریان است. در حالت جریان در کانال باز، طول مشخصه عمق آب است؛ اعداد فرود کم تر از واحد نشان می دهد که جریان زیر بحرانی است و مقادیر بزرگ تر از واحد نشان می دهد که جریان فوق بحرانی است.
عدد و بر عبارت است از نسبت نیرو های اینرسی به نیروهای کشش سطحی. آن را می توان چنین نوشت:
در دهه 1870، فیزیکدان استرالیایی ارنست ماخ پارامتر زیر را دکرد:
که در آن V سرعت جریان و c سرعت صوت محلی است. تحلیل و آزمایش نشان میدهد که عدد ماخ پارامتری کلیدی است، تاثیرات تراکم ناپذیری را در یک جریان مشخص می کند. عدد ماخ را می توان چنین نوشت:
یا
آن را به عنوان نسبت نیروهای اینرسی به نیروهای ناشی از تراکم پذیری می توان تفسیر کرد. برای جریان کاملاً تراکم ناپذیر (در عرضی شرایط حتی مایعات کاملاً تراکم ناپذیر هستند)، . بنابراین M=0.
5- تشابه جریان و مطالعه های مدل
برای اینکه آزمون مدل مفید باشد باید داده هایی را بدهد که بتوان آنها را مقیاس بندی کرد و نیروها، و گشتاورها و بارهای دینامیکی موثر بر نمونه اصلی با اندازه کامل را به دست آورد. چه شرایطی باید برقرار باشد تا بین جریان مدل و جریان نمونه اصلی تشابه وجود داشته باشد؟
شاید بدیهی ترین شرط این است که مدل و نمونه اصلی باید به دور هندسی متشابه باشند. تشابه هندسی ایجاب می کند که مدل و نمونه اصلی دارای شکل یکسان باشند، و تمام ابعاد خطی مدل با تقریب مقیاس ثابتی به ابعاد متناظر نمونه اصلی ارتباط داده شوند.
شرط دوم این است که جریان مدل و جریان نمونه اصلی باید به طور سینماتیکی متشابه باشند. دو جریان وقتی به طور سینماتیکی متشابه هستند که سرعت ها در نقاط متناظر هم جهت باشند و مقدار آنها با یک ضریب مقیاس ثابت به هم ارتباط داده شوند. از این رو دو جریان که به طور سینماتیکی متشابه هستند دارای نقش های خط جریانی نیز هستند که با ضریب مقیاس ثابت به هم مربوط می شوند. از آنجا که مرزها خطوط جریان احاطه کننده تشکیل می دهند، جریان هایی که به طور سینماتیکی متشابه هستند باید به طور هندسی متشابه باشند.
اصولاً، تشابه سینماتیکی ایجاب می کند که برای به دست آوردن داده های بازدارندگی موثر بر یک جسم، از تونل باد با مقطع عرضی نامحدود استفاده شود تا عملکرد در یک میدان جریان محدود به درستی مدل بندی شود. در عمل، این محدودیت را به طور قابل توجه می توان تعدیل کرد، و از وسیله ای با اندازه منطقی استفاده کرد.
تشابه سینماتیکی ایجاب می کند که نوع جریان مدل و نوع جریان نمونه اصلی با هم یکسان باشند. اگر آثار تراکم ناپذیری یا حفره زایی، که نقش های جریان را به طور کیفی می توانند تغییر دهند، در جریان نمونه اصلی وجود نداشته باشند، در جریان مدل از وجود آنها باید جلوگیری کرد.
وقتی توزیع نیروها در دو جریان به صورتی باشد که در تمام نقاط متناظر، انواع نیروهای همسان با هم موازی باشند و مقدار آنها با ضریب مقیاس ثابت به هم مربوط شود، جریان ها به طور دینامیکی متشابه هستند.
شرایط تشابه دینامیکی بسیار محدود است: دو جریان باید هر دو تشابه هندسی و سینماتیکی را داشته باشند تا به طور دینامیکی متشابه باشند.
برای در نظر گرفتن شرایط لازم برای تشابه دینامیکی کامل، تمام نیروهایی که در جریان مهم هستند باید در نظر گرفته شوند. از این رو، تاثیرات نیروهای چسبندگی، نیروهای فشاری، نیروهای کشش سطحی و غیره، باید در نظر گرفته شود. شرایط آزمون باید طوری در نظر گرفته شود که تمام نیروهای مهم میان جریان های مدل و نمونه اصلی با ضریب مقیاس یکسان به هم ارتباط داده شود. وقتی تشابه دینامیکی وجود دارد، داده های اندازه گیری شده در یک جریان مدل را می توان به طور کمی به شرایط جریان نمونه اصلی ارتباط داد. در این صورت، شرایطی که تشابه دینامیکی بین جریان های مدل اصلی را برقرار می کنند چه هستند؟
برای یافتن گروه های بیبعد حاکم در یک پدیده جریان، از نظریه پی بوکینگهام میتوان استفاده کرد؛ برای یافتن تشابه دینامیکی بین جریان های به طور هندسی متشابه، باید تمام این گروه های بیبعد به غیر از یکی را همانند قرار داد.
مثلاً در بررسی نیروی بازدارندگی موثر بر یک کره در مثال 1، با رابطه زیر شروع می کنیم:
نظریه پی بوکینگهام رابطه تابعی زیر را می دهد
در قسمت 4 نشان دادیم که پارامترهای بیبعد را به صورت نسبت نیروها می توان تفسیر کرد. از این رو، در بررسی جریان مدل و جریان نمونه اصلی پیرامون یک کره (جریان ها به طور هندسی متشابه هستند)، جریان ها به طور دینامیکی متشابه هستند اگر
به علاوه، اگر
در این صورت
و نتایج حاصل از مطالعه مدل را برای پیش بینی بازدارنگی موثر بر نمونه اصلی با اندازه کامل می توان به کار برد.
نیروی واقعی که سیال بر جسم وارد می کند در هر حالت یکسان نیست، اما مقدار بیبعد آن یکسان است. در صورت لزوم، می توان دو آزمایش را با استفاده از سیالات متفاوت انجام داد تا اعداد رینولدز با هم برابر شوند. مطابق مثال 4، برای سهولت آزمایش می توان داده های آزمون را در یک تونل باد در هوا اندازه گیری کرد و از نتایج برای پیش بینی نیروی بازدارندگی در آب استفاده کرد.
مثال 4 تشابه: نیروی بازدارندگی مبدل یک وسیله کاشف زیر دریایی.
بازدارندگی مبدل یک وسیله کاشف زیر دریایی قرار است از روی داده های آزمون در تونل باد تعیین شود. نمونه اصلی، کره ای به قطر mm300، باید با سرعت 5نات (مایل دریایی در ساعت، و یک مایل معادل 1852 متر است) در آب دریای حرکت کند. مدل به قطر mm150 است. سرعت لازم را برای آزمایش در هوا بیابید. اگر بازدارندگی مدل در شرایط آزمایش 24.8N باشد، بازدارندگی موثر بر نمونه اصلی را تخمین بزنید.
تحلیل مثال 4
داده: مبدل یک وسیله کاشف زیر دریایی قرار است در تونل باد آزمایش شود.
خواسته: (الف) (ب)
(فرمول در فایل اصلی موجود است)
حل:
از آنجا که نمونه اصلی در آب عمل می کند و آزمایش مدل قرار است در هوا انجام شود، فقط اگر تاثیرات حفره زایی در جریان نمونه اصلی و تاثیرات تراکم ناپذیری در آزمایش مدل وجود نداشته باشد، نتایج مفیدی به دست می آید.